Commutative weakly nil-neat group rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative Nil Clean Group Rings

In [5] and [6], a nil clean ring was defined as a ring for which every element is the sum of a nilpotent and an idempotent. In this short article we characterize nil clean commutative group rings.

متن کامل

Neat Rings

A ring is called clean if every element is the sum of a unit and an idempotent. Throughout the last 30 years several characterizations of commutative clean rings have been given. We have compiled a thorough list, including some new equivalences, in hopes that in the future there will be a better understanding of this interesting class of rings. One of the fundamental properties of clean rings i...

متن کامل

LWE from Non-commutative Group Rings

The Ring Learning-With-Errors (LWE) problem, whose security is based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. There are however recent discoveries of faster algorithms for the principal ideal SVP problem, and attempts to generalize the attack to non-principal ideals. In this work, we study the LWE problem on group rings, a...

متن کامل

Some Properties of the Nil-Graphs of Ideals of Commutative Rings

Let R be a commutative ring with identity and Nil(R) be the set of nilpotent elements of R. The nil-graph of ideals of R is defined as the graph AG_N(R) whose vertex set is {I:(0)and there exists a non-trivial ideal  such that  and two distinct vertices  and  are adjacent if and only if . Here, we study conditions under which  is complete or bipartite. Also, the independence number of  is deter...

متن کامل

Basic Subgroups in Commutative Modular Group Rings

Let S(RG) be a normed Sylow p-subgroup in a group ring RG of an abelian group G with p-component Gp and a p-basic subgroup B over a commutative unitary ring R with prime characteristic p. The first central result is that 1 + I(RG;Bp) + I(R(p)G;G) is basic in S(RG) and B[1 + I(RG;Bp) + I(R(p )G;G)] is p-basic in V (RG), and [1 + I(RG;Bp) + I(R(p )G;G)]Gp/Gp is basic in S(RG)/Gp and [1 + I(RG;Bp)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2020

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2020.1713329